Vowpal Wabbit
Public Attributes | List of all members
example Struct Reference

#include <example.h>

Inheritance diagram for example:
example_predict

Public Attributes

polylabel l
 
polyprediction pred
 
float weight
 
v_array< char > tag
 
size_t example_counter
 
size_t num_features
 
float partial_prediction
 
float updated_prediction
 
float loss
 
float total_sum_feat_sq
 
float confidence
 
featurespassthrough
 
bool test_only
 
bool end_pass
 
bool sorted
 
bool in_use
 
- Public Attributes inherited from example_predict
v_array< namespace_indexindices
 
std::array< features, NUM_NAMESPACESfeature_space
 
uint64_t ft_offset
 
std::vector< std::string > * interactions
 

Additional Inherited Members

- Public Member Functions inherited from example_predict
iterator begin ()
 
iterator end ()
 

Detailed Description

Definition at line 54 of file example.h.

Member Data Documentation

◆ confidence

float example::confidence

◆ end_pass

bool example::end_pass

◆ example_counter

size_t example::example_counter

◆ in_use

bool example::in_use

◆ l

polylabel example::l

Definition at line 57 of file example.h.

Referenced by Search::add_example_conditioning(), VW::add_label(), CCB::attach_label_to_example(), bs_predict_mean(), bs_predict_vote(), CCB::build_cb_example(), LEARNER::multi_example_handler< context_type >::complete_multi_ex(), MARGINAL::compute_expert_loss(), memory_tree_ns::compute_hamming_loss_via_oas(), GD::compute_update(), memory_tree_ns::copy_example_data(), VW::copy_example_label(), CCB::create_cb_labels(), VW::dealloc_example(), CCB::delete_cb_labels(), MULTICLASS::direct_print_update(), EXPLORE_EVAL::do_actual_learning(), CSOAA::do_actual_learning_oaa(), CSOAA::do_actual_learning_wap(), dot_with_direction(), CB::ec_is_example_header(), COST_SENSITIVE::ec_is_example_header(), CCB::ec_is_example_header(), CSOAA::ec_is_label_definition(), ect_predict(), ect_train(), end_pass_example(), LabelObjectState< audit >::EndObject(), DefaultState< audit >::EndObject(), CB_ALGS::eval_finish_example(), GraphTask::example_is_edge(), example_is_test(), COST_SENSITIVE::example_is_test(), memory_tree_ns::F1_score_for_two_examples(), recall_tree_ns::find(), recall_tree_ns::find_or_create(), CB_ALGS::finish_example(), MULTICLASS::finish_example(), CB_EXPLORE::finish_example(), finish_example_scores(), finish_setup(), flatten_example(), LabelObjectState< audit >::Float(), LabelState< audit >::Float(), GEN_CS::gen_cs_example_dm(), Search::generate_training_example(), CB_ALGS::get_cost_pred(), VW::cb_explore_adf::regcb::cb_explore_adf_regcb::get_cost_ranges(), VW::get_initial(), VW::get_label(), ezexample::get_new_example(), memory_tree_ns::get_overlap_from_two_examples(), GD::get_pred_per_update(), SVRG::gradient_scalar(), VW::import_example(), VWReaderHandler< audit >::init(), EntityRelationTask::initialize(), SequenceTask_DemoLDF::initialize(), SVRG::inline_predict(), GD::inline_predict(), CSOAA::inner_loop(), inner_loop(), recall_tree_ns::is_candidate(), learn(), recall_tree_ns::learn(), GD::learn(), memory_tree_ns::learn_at_leaf_random(), CB_ALGS::learn_eval(), learn_randomized(), learn_sup_adf(), MARGINAL::make_marginal(), CSOAA::make_single_prediction(), mf_predict(), mf_train(), ezexample::mini_setup_example(), multipredict(), GD::multipredict(), VW::new_unused_example(), recall_tree_ns::oas_predict(), example_initializer::operator()(), output_and_account_confidence_example(), output_and_account_example(), EXPLORE_EVAL::output_example(), MULTILABEL::output_example(), output_example(), COST_SENSITIVE::output_example(), CB_ADF::output_example(), CSOAA::output_example(), CB_ADF::output_rank_example(), CSOAA::output_rank_example(), VW::parse_example_label(), memory_tree_ns::pick_nearest(), VW::cb_explore_adf::cb_explore_adf_base< ExploreType >::predict(), predict(), memory_tree_ns::predict(), predict_and_gradient(), EntityRelationTask::predict_entity(), recall_tree_ns::predict_from(), ExpReplay::predict_or_learn(), CLASSWEIGHTS::predict_or_learn(), CB_ALGS::predict_or_learn(), CSOAA::predict_or_learn(), MWT::predict_or_learn(), predict_or_learn(), predict_or_learn_active(), predict_or_learn_active_cover(), predict_or_learn_adaptive(), predict_or_learn_adf(), predict_or_learn_bandit_adf(), CB_EXPLORE::predict_or_learn_cover(), CB_EXPLORE::predict_or_learn_first(), predict_or_learn_logistic(), predict_or_learn_multi(), predict_or_learn_simulation(), predict_or_learn_with_confidence(), EntityRelationTask::predict_relation(), MULTICLASS::print_label_pred(), MULTICLASS::print_probability(), MULTICLASS::print_score(), print_update(), MULTILABEL::print_update(), CB_EXPLORE::print_update_cb_explore(), process_example(), CSOAA::process_label(), read_cached_features(), receive_result(), memory_tree_ns::return_reward_from_node(), memory_tree_ns::route_to_leaf(), SequenceTask_DemoLDF::run(), memory_tree_ns::save_load_example(), sensitivity(), VW::setup_example(), Search::single_prediction_LDF(), Search::single_prediction_notLDF(), memory_tree_ns::single_query_and_learn(), MultiState< audit >::StartArray(), LabelObjectState< audit >::StartObject(), MultiState< audit >::StartObject(), SlotsState< audit >::StartObject(), substring_to_example(), synthetic_reset(), train_node(), recall_tree_ns::train_node(), memory_tree_ns::train_node(), memory_tree_ns::train_one_against_some_at_leaf(), GD::trunc_predict(), LabelState< audit >::Uint(), update(), update_after_prediction_cb(), update_after_prediction_pistol(), update_after_prediction_proximal(), MARGINAL::update_marginal(), and update_preconditioner().

◆ loss

float example::loss

◆ num_features

size_t example::num_features

Definition at line 67 of file example.h.

Referenced by VW::add_constant_feature(), Search::add_example_conditioning(), LabelDict::add_example_namespace(), Search::add_neighbor_features(), ezexample::add_other_example_ns(), ezexample::addf(), VW::copy_example_data(), LabelDict::del_example_namespace(), Search::del_features_in_top_namespace(), MULTICLASS::direct_print_update(), DepParserTask::extract_features(), MULTICLASS::finish_example(), MWT::finish_example(), finish_example(), finish_example_scores(), finish_setup(), flatten_example(), VW::get_feature_number(), ezexample::get_new_example(), ezexample::get_num_features(), init_global(), mf_predict(), ezexample::mini_setup_example(), VW::move_feature_namespace(), output_and_account_confidence_example(), output_and_account_example(), no_label::output_and_account_no_label_example(), VW::cb_explore_adf::cb_explore_adf_base< ExploreType >::output_example(), CB_ALGS::output_example(), MULTILABEL::output_example(), output_example(), CB_EXPLORE::output_example(), COST_SENSITIVE::output_example(), CSOAA::output_example(), CSOAA::output_rank_example(), predict_or_learn(), MULTICLASS::print_label_pred(), no_label::print_no_label_update(), MULTICLASS::print_probability(), MULTICLASS::print_score(), print_update(), MULTILABEL::print_update(), CB::print_update(), COST_SENSITIVE::print_update(), CB_EXPLORE::print_update_cb_explore(), ezexample::remns(), DepParserTask::reset_ex(), return_example(), memory_tree_ns::save_load_example(), VW::setup_example(), Search::single_prediction_LDF(), Search::single_prediction_notLDF(), CSOAA::subtract_example(), synthetic_create(), synthetic_create_rec(), synthetic_reset(), CSOAA::unsubtract_example(), and CB_ADF::cb_adf::update_statistics().

◆ partial_prediction

float example::partial_prediction

◆ passthrough

features* example::passthrough

◆ pred

polyprediction example::pred

Definition at line 60 of file example.h.

Referenced by bs_predict_mean(), bs_predict_vote(), CCB::build_cb_example(), MARGINAL::compute_expert_loss(), memory_tree_ns::compute_hamming_loss_via_oas(), GD::compute_update(), VW::dealloc_example(), dis_test(), CSOAA::do_actual_learning(), ect_predict(), ect_train(), find_cost_range(), MULTICLASS::finish_example(), MWT::finish_example(), finish_example_scores(), GEN_CS::gen_cs_example_dm(), VW::get_action_score(), VW::get_action_score_length(), CB_ALGS::get_cost_pred(), VW::cb_explore_adf::regcb::cb_explore_adf_regcb::get_cost_ranges(), VW::get_cost_sensitive_prediction(), VW::get_cost_sensitive_prediction_confidence_scores(), CB_EXPLORE::get_cover_probabilities(), VW::get_multilabel_predictions(), GD::get_pred_per_update(), VW::get_prediction(), VW::get_topic_prediction(), learn(), recall_tree_ns::learn(), learn_randomized(), mf_print_audit_features(), mf_train(), multipredict(), GD::multipredict(), recall_tree_ns::oas_predict(), output_and_account_confidence_example(), output_and_account_example(), no_label::output_and_account_no_label_example(), EXPLORE_EVAL::output_example(), CB_ALGS::output_example(), MULTILABEL::output_example(), output_example(), CB_EXPLORE::output_example(), COST_SENSITIVE::output_example(), CB_ADF::output_example(), CSOAA::output_example(), CB_ADF::output_rank_example(), CSOAA::output_rank_example(), SVRG::predict(), ezexample::predict(), recall_tree_ns::predict(), GD::predict(), memory_tree_ns::predict(), predict(), recall_tree_ns::predict_from(), VW::shared_feature_merger::predict_or_learn(), CSOAA::predict_or_learn(), MWT::predict_or_learn(), predict_or_learn(), MARGINAL::predict_or_learn(), predict_or_learn_active(), predict_or_learn_active_cover(), predict_or_learn_adaptive(), predict_or_learn_adf(), CB_EXPLORE::predict_or_learn_bag(), predict_or_learn_bandit_adf(), CB_EXPLORE::predict_or_learn_cover(), CB_EXPLORE::predict_or_learn_first(), CB_EXPLORE::predict_or_learn_greedy(), predict_or_learn_logistic(), predict_or_learn_multi(), predict_or_learn_simulation(), predict_or_learn_with_confidence(), VW::autolink::prepare_example(), GD::print_audit_features(), no_label::print_no_label_update(), MULTICLASS::print_probability(), print_update(), MULTILABEL::print_update(), MULTICLASS::print_update(), CB::print_update(), COST_SENSITIVE::print_update(), process_example(), query_decision(), receive_result(), return_example(), memory_tree_ns::return_reward_from_node(), memory_tree_ns::route_to_leaf(), CCB::save_action_scores(), sensitivity(), Search::single_prediction_notLDF(), memory_tree_ns::single_query_and_learn(), recall_tree_ns::train_node(), memory_tree_ns::train_node(), memory_tree_ns::train_one_against_some_at_leaf(), update_after_prediction_cb(), update_after_prediction_pistol(), update_after_prediction_proximal(), SVRG::update_inner(), update_preconditioner(), update_state_and_predict_cb(), update_state_and_predict_pistol(), and CB_ADF::cb_adf::update_statistics().

◆ sorted

bool example::sorted

◆ tag

v_array<char> example::tag

◆ test_only

bool example::test_only

◆ total_sum_feat_sq

float example::total_sum_feat_sq

◆ updated_prediction

float example::updated_prediction

◆ weight

float example::weight

Definition at line 62 of file example.h.

Referenced by VW::add_label(), bs_predict_mean(), bs_predict_vote(), GD::compute_update(), VW::copy_example_metadata(), dis_test(), EXPLORE_EVAL::do_actual_learning(), CSOAA::do_actual_learning_wap(), ect_train(), MULTICLASS::finish_example(), finish_example_scores(), finish_setup(), flatten_example(), CB_ALGS::get_cost_pred(), VW::get_importance(), GD::get_pred_per_update(), SVRG::gradient_scalar(), CSOAA::inner_loop(), inner_loop(), recall_tree_ns::insert_example_at_node(), learn(), GD::learn(), memory_tree_ns::learn_at_leaf_random(), learn_randomized(), mf_train(), ezexample::mini_setup_example(), output_and_account_confidence_example(), output_and_account_example(), no_label::output_and_account_no_label_example(), EXPLORE_EVAL::output_example(), output_example(), COST_SENSITIVE::output_example(), memory_tree_ns::predict(), predict_and_gradient(), predict_or_learn(), CLASSWEIGHTS::predict_or_learn(), predict_or_learn_active_cover(), predict_or_learn_adaptive(), predict_or_learn_adf(), predict_or_learn_logistic(), predict_or_learn_multi(), predict_or_learn_simulation(), process_example(), query_decision(), receive_result(), return_example(), memory_tree_ns::return_reward_from_node(), memory_tree_ns::save_load_example(), VW::setup_example(), memory_tree_ns::single_query_and_learn(), synthetic_reset(), memory_tree_ns::train_node(), update_after_prediction_cb(), update_after_prediction_pistol(), update_after_prediction_proximal(), MARGINAL::update_marginal(), update_preconditioner(), update_state_and_predict_cb(), CB_ADF::cb_adf::update_statistics(), and recall_tree_ns::updated_entropy().


The documentation for this struct was generated from the following file: