Vowpal Wabbit
Loading...
Searching...
No Matches
Typedefs | Functions
VW::LEARNER::details Namespace Reference

Typedefs

using void_func = std::function< void(void)>
 
using example_func = std::function< void(polymorphic_ex ex)>
 
using multipredict_func = std::function< void(polymorphic_ex ex, size_t count, size_t step, polyprediction *pred, bool finalize_predictions)>
 
using sensitivity_func = std::function< float(example &ex)>
 
using save_load_func = std::function< void(io_buf &, bool read, bool text)>
 
using pre_save_load_func = std::function< void(VW::workspace &all)>
 
using save_metric_func = std::function< void(metric_sink &metrics)>
 
using finish_example_func = std::function< void(VW::workspace &, polymorphic_ex ex)>
 
using update_stats_func = std::function< void(const VW::workspace &, VW::shared_data &sd, const polymorphic_ex ex, VW::io::logger &logger)>
 
using output_example_prediction_func = std::function< void(VW::workspace &, const polymorphic_ex ex, VW::io::logger &logger)>
 
using print_update_func = std::function< void(VW::workspace &, VW::shared_data &sd, const polymorphic_ex ex, VW::io::logger &logger)>
 
using cleanup_example_func = std::function< void(polymorphic_ex ex)>
 
using merge_func = std::function< void(const std::vector< float > &per_model_weighting, const std::vector< const void * > &all_data, void *output_data)>
 
using merge_with_all_func = std::function< void(const std::vector< float > &per_model_weighting, const std::vector< const VW::workspace * > &all_workspaces, const std::vector< const void * > &all_data, VW::workspace &output_workspace, void *output_data)>
 
using add_subtract_func = std::function< void(const void *data1, const void *data2, void *data_out)>
 
using add_subtract_with_all_func = std::function< void(const VW::workspace &ws1, const void *data1, const VW::workspace &ws2, const void *data2, VW::workspace &ws_out, void *data_out)>
 

Functions

void debug_increment_depth (polymorphic_ex ex)
 
void debug_decrement_depth (polymorphic_ex ex)
 
void increment_offset (polymorphic_ex ex, const size_t feature_width_below, const size_t i)
 
void decrement_offset (polymorphic_ex ex, const size_t feature_width_below, const size_t i)
 
void learner_build_diagnostic (VW::string_view this_name, VW::string_view base_name, prediction_type_t in_pred_type, prediction_type_t base_out_pred_type, label_type_t out_label_type, label_type_t base_in_label_type, details::merge_func merge_f, details::merge_with_all_func merge_with_all_f)
 
float recur_sensitivity (learner &base, example &ec)
 
template<typename DataT >
float recur_sensitivity (DataT &, learner &base, example &ec)
 

Typedef Documentation

◆ add_subtract_func

using VW::LEARNER::details::add_subtract_func = typedef std::function<void(const void* data1, const void* data2, void* data_out)>

◆ add_subtract_with_all_func

using VW::LEARNER::details::add_subtract_with_all_func = typedef std::function<void(const VW::workspace& ws1, const void* data1, const VW::workspace& ws2, const void* data2, VW::workspace& ws_out, void* data_out)>

◆ cleanup_example_func

using VW::LEARNER::details::cleanup_example_func = typedef std::function<void(polymorphic_ex ex)>

◆ example_func

using VW::LEARNER::details::example_func = typedef std::function<void(polymorphic_ex ex)>

◆ finish_example_func

using VW::LEARNER::details::finish_example_func = typedef std::function<void(VW::workspace&, polymorphic_ex ex)>

◆ merge_func

using VW::LEARNER::details::merge_func = typedef std::function<void( const std::vector<float>& per_model_weighting, const std::vector<const void*>& all_data, void* output_data)>

◆ merge_with_all_func

using VW::LEARNER::details::merge_with_all_func = typedef std::function<void(const std::vector<float>& per_model_weighting, const std::vector<const VW::workspace*>& all_workspaces, const std::vector<const void*>& all_data, VW::workspace& output_workspace, void* output_data)>

◆ multipredict_func

using VW::LEARNER::details::multipredict_func = typedef std::function<void(polymorphic_ex ex, size_t count, size_t step, polyprediction* pred, bool finalize_predictions)>

◆ output_example_prediction_func

using VW::LEARNER::details::output_example_prediction_func = typedef std::function<void(VW::workspace&, const polymorphic_ex ex, VW::io::logger& logger)>

◆ pre_save_load_func

using VW::LEARNER::details::pre_save_load_func = typedef std::function<void(VW::workspace& all)>

◆ print_update_func

using VW::LEARNER::details::print_update_func = typedef std::function<void(VW::workspace&, VW::shared_data& sd, const polymorphic_ex ex, VW::io::logger& logger)>

◆ save_load_func

using VW::LEARNER::details::save_load_func = typedef std::function<void(io_buf&, bool read, bool text)>

◆ save_metric_func

using VW::LEARNER::details::save_metric_func = typedef std::function<void(metric_sink& metrics)>

◆ sensitivity_func

using VW::LEARNER::details::sensitivity_func = typedef std::function<float(example& ex)>

◆ update_stats_func

using VW::LEARNER::details::update_stats_func = typedef std::function<void(const VW::workspace&, VW::shared_data& sd, const polymorphic_ex ex, VW::io::logger& logger)>

◆ void_func

using VW::LEARNER::details::void_func = typedef std::function<void(void)>

Function Documentation

◆ debug_decrement_depth()

void VW::LEARNER::details::debug_decrement_depth ( polymorphic_ex  ex)

◆ debug_increment_depth()

void VW::LEARNER::details::debug_increment_depth ( polymorphic_ex  ex)

◆ decrement_offset()

void VW::LEARNER::details::decrement_offset ( polymorphic_ex  ex,
const size_t  feature_width_below,
const size_t  i 
)

◆ increment_offset()

void VW::LEARNER::details::increment_offset ( polymorphic_ex  ex,
const size_t  feature_width_below,
const size_t  i 
)

◆ learner_build_diagnostic()

void VW::LEARNER::details::learner_build_diagnostic ( VW::string_view  this_name,
VW::string_view  base_name,
prediction_type_t  in_pred_type,
prediction_type_t  base_out_pred_type,
label_type_t  out_label_type,
label_type_t  base_in_label_type,
details::merge_func  merge_f,
details::merge_with_all_func  merge_with_all_f 
)

◆ recur_sensitivity() [1/2]

template<typename DataT >
float VW::LEARNER::details::recur_sensitivity ( DataT &  ,
learner base,
example ec 
)
inline

◆ recur_sensitivity() [2/2]

float VW::LEARNER::details::recur_sensitivity ( learner base,
example ec 
)
inline