Vowpal Wabbit
|
Typedefs | |
using | void_func = std::function< void(void)> |
using | example_func = std::function< void(polymorphic_ex ex)> |
using | multipredict_func = std::function< void(polymorphic_ex ex, size_t count, size_t step, polyprediction *pred, bool finalize_predictions)> |
using | sensitivity_func = std::function< float(example &ex)> |
using | save_load_func = std::function< void(io_buf &, bool read, bool text)> |
using | pre_save_load_func = std::function< void(VW::workspace &all)> |
using | save_metric_func = std::function< void(metric_sink &metrics)> |
using | finish_example_func = std::function< void(VW::workspace &, polymorphic_ex ex)> |
using | update_stats_func = std::function< void(const VW::workspace &, VW::shared_data &sd, const polymorphic_ex ex, VW::io::logger &logger)> |
using | output_example_prediction_func = std::function< void(VW::workspace &, const polymorphic_ex ex, VW::io::logger &logger)> |
using | print_update_func = std::function< void(VW::workspace &, VW::shared_data &sd, const polymorphic_ex ex, VW::io::logger &logger)> |
using | cleanup_example_func = std::function< void(polymorphic_ex ex)> |
using | merge_func = std::function< void(const std::vector< float > &per_model_weighting, const std::vector< const void * > &all_data, void *output_data)> |
using | merge_with_all_func = std::function< void(const std::vector< float > &per_model_weighting, const std::vector< const VW::workspace * > &all_workspaces, const std::vector< const void * > &all_data, VW::workspace &output_workspace, void *output_data)> |
using | add_subtract_func = std::function< void(const void *data1, const void *data2, void *data_out)> |
using | add_subtract_with_all_func = std::function< void(const VW::workspace &ws1, const void *data1, const VW::workspace &ws2, const void *data2, VW::workspace &ws_out, void *data_out)> |
Functions | |
void | debug_increment_depth (polymorphic_ex ex) |
void | debug_decrement_depth (polymorphic_ex ex) |
void | increment_offset (polymorphic_ex ex, const size_t feature_width_below, const size_t i) |
void | decrement_offset (polymorphic_ex ex, const size_t feature_width_below, const size_t i) |
void | learner_build_diagnostic (VW::string_view this_name, VW::string_view base_name, prediction_type_t in_pred_type, prediction_type_t base_out_pred_type, label_type_t out_label_type, label_type_t base_in_label_type, details::merge_func merge_f, details::merge_with_all_func merge_with_all_f) |
float | recur_sensitivity (learner &base, example &ec) |
template<typename DataT > | |
float | recur_sensitivity (DataT &, learner &base, example &ec) |
using VW::LEARNER::details::add_subtract_func = typedef std::function<void(const void* data1, const void* data2, void* data_out)> |
using VW::LEARNER::details::add_subtract_with_all_func = typedef std::function<void(const VW::workspace& ws1, const void* data1, const VW::workspace& ws2, const void* data2, VW::workspace& ws_out, void* data_out)> |
using VW::LEARNER::details::cleanup_example_func = typedef std::function<void(polymorphic_ex ex)> |
using VW::LEARNER::details::example_func = typedef std::function<void(polymorphic_ex ex)> |
using VW::LEARNER::details::finish_example_func = typedef std::function<void(VW::workspace&, polymorphic_ex ex)> |
using VW::LEARNER::details::merge_func = typedef std::function<void( const std::vector<float>& per_model_weighting, const std::vector<const void*>& all_data, void* output_data)> |
using VW::LEARNER::details::merge_with_all_func = typedef std::function<void(const std::vector<float>& per_model_weighting, const std::vector<const VW::workspace*>& all_workspaces, const std::vector<const void*>& all_data, VW::workspace& output_workspace, void* output_data)> |
using VW::LEARNER::details::multipredict_func = typedef std::function<void(polymorphic_ex ex, size_t count, size_t step, polyprediction* pred, bool finalize_predictions)> |
using VW::LEARNER::details::output_example_prediction_func = typedef std::function<void(VW::workspace&, const polymorphic_ex ex, VW::io::logger& logger)> |
using VW::LEARNER::details::pre_save_load_func = typedef std::function<void(VW::workspace& all)> |
using VW::LEARNER::details::print_update_func = typedef std::function<void(VW::workspace&, VW::shared_data& sd, const polymorphic_ex ex, VW::io::logger& logger)> |
using VW::LEARNER::details::save_load_func = typedef std::function<void(io_buf&, bool read, bool text)> |
using VW::LEARNER::details::save_metric_func = typedef std::function<void(metric_sink& metrics)> |
using VW::LEARNER::details::sensitivity_func = typedef std::function<float(example& ex)> |
using VW::LEARNER::details::update_stats_func = typedef std::function<void(const VW::workspace&, VW::shared_data& sd, const polymorphic_ex ex, VW::io::logger& logger)> |
using VW::LEARNER::details::void_func = typedef std::function<void(void)> |
void VW::LEARNER::details::debug_decrement_depth | ( | polymorphic_ex | ex | ) |
void VW::LEARNER::details::debug_increment_depth | ( | polymorphic_ex | ex | ) |
void VW::LEARNER::details::decrement_offset | ( | polymorphic_ex | ex, |
const size_t | feature_width_below, | ||
const size_t | i | ||
) |
void VW::LEARNER::details::increment_offset | ( | polymorphic_ex | ex, |
const size_t | feature_width_below, | ||
const size_t | i | ||
) |
void VW::LEARNER::details::learner_build_diagnostic | ( | VW::string_view | this_name, |
VW::string_view | base_name, | ||
prediction_type_t | in_pred_type, | ||
prediction_type_t | base_out_pred_type, | ||
label_type_t | out_label_type, | ||
label_type_t | base_in_label_type, | ||
details::merge_func | merge_f, | ||
details::merge_with_all_func | merge_with_all_f | ||
) |
|
inline |