232 auto data = scoped_calloc_or_throw<active_cover>();
235 bool active_cover_option =
false;
236 new_options.add(
make_option(
"active_cover", active_cover_option).keep().help(
"enable active learning with cover"))
239 .help(
"active learning mellowness parameter c_0. Default 8."))
242 .help(
"active learning variance upper bound parameter alpha. Default 1."))
244 .default_value(sqrtf(10.
f))
245 .help(
"active learning variance upper bound parameter beta_scale. Default std::sqrt(10)."))
246 .
add(
make_option(
"cover", data->cover_size).keep().default_value(12).help(
"cover size. Default 12."))
247 .
add(
make_option(
"oracular", data->oracular).help(
"Use Oracular-CAL style query or not. Default false."));
250 if (!active_cover_option)
255 data->beta_scale *= data->beta_scale;
258 data->cover_size = 0;
261 THROW(
"error: you can't combine lda and active learning");
264 THROW(
"error: you can't use --active_cover and --active at the same time");
268 data->lambda_n =
new float[data->cover_size];
269 data->lambda_d =
new float[data->cover_size];
271 for (
size_t i = 0; i < data->cover_size; i++)
273 data->lambda_n[i] = 0.f;
274 data->lambda_d[i] = 1.f / 8.f;
279 data, base, predict_or_learn_active_cover<true>, predict_or_learn_active_cover<false>, data->cover_size + 1);
base_learner * make_base(learner< T, E > &base)
virtual void add_and_parse(const option_group_definition &group)=0
std::shared_ptr< rand_state > get_random_state()
single_learner * as_singleline(learner< T, E > *l)
learner< T, E > & init_learner(free_ptr< T > &dat, L *base, void(*learn)(T &, L &, E &), void(*predict)(T &, L &, E &), size_t ws, prediction_type::prediction_type_t pred_type)
virtual bool was_supplied(const std::string &key)=0
int add(svm_params ¶ms, svm_example *fec)
typed_option< T > make_option(std::string name, T &location)
LEARNER::base_learner * setup_base(options_i &options, vw &all)