Vowpal Wabbit
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Private Member Functions | Private Attributes | List of all members
LEARNER::learner< T, E > Struct Template Reference

#include <cb_explore.h>

Public Types

using end_fptr_type = void(*)(vw &, void *, void *)
 
using finish_fptr_type = void(*)(void *)
 

Public Member Functions

void learn (E &ec, size_t i=0)
 
void predict (E &ec, size_t i=0)
 
void multipredict (E &ec, size_t lo, size_t count, polyprediction *pred, bool finalize_predictions)
 
template<class L >
void set_predict (void(*u)(T &, L &, E &))
 
template<class L >
void set_learn (void(*u)(T &, L &, E &))
 
template<class L >
void set_multipredict (void(*u)(T &, L &, E &, size_t, size_t, polyprediction *, bool))
 
void update (E &ec, size_t i=0)
 
template<class L >
void set_update (void(*u)(T &data, L &base, E &))
 
void set_sensitivity (float(*u)(T &data, base_learner &base, example &))
 
float sensitivity (example &ec, size_t i=0)
 
void save_load (io_buf &io, const bool read, const bool text)
 
void set_save_load (void(*sl)(T &, io_buf &, bool, bool))
 
void set_finish (void(*f)(T &))
 
void finish ()
 
void end_pass ()
 
void set_end_pass (void(*f)(T &))
 
void end_examples ()
 
void set_end_examples (void(*f)(T &))
 
void init_driver ()
 
void set_init_driver (void(*f)(T &))
 
void finish_example (vw &all, E &ec)
 
void set_finish_example (void(*f)(vw &all, T &, E &))
 

Static Public Member Functions

template<class L >
static learner< T, E > & init_learner (T *dat, L *base, void(*learn)(T &, L &, E &), void(*predict)(T &, L &, E &), size_t ws, prediction_type::prediction_type_t pred_type)
 

Public Attributes

prediction_type::prediction_type_t pred_type
 
size_t weights
 
size_t increment
 
bool is_multiline
 

Private Member Functions

 learner ()
 

Private Attributes

func_data init_fd
 
learn_data learn_fd
 
sensitivity_data sensitivity_fd
 
finish_example_data finish_example_fd
 
save_load_data save_load_fd
 
func_data end_pass_fd
 
func_data end_examples_fd
 
func_data finisher_fd
 
std::shared_ptr< void > learner_data
 

Detailed Description

template<class T, class E>
struct LEARNER::learner< T, E >

Definition at line 11 of file cb_explore.h.

Member Typedef Documentation

◆ end_fptr_type

template<class T, class E>
using LEARNER::learner< T, E >::end_fptr_type = void (*)(vw&, void*, void*)

Definition at line 156 of file learner.h.

◆ finish_fptr_type

template<class T, class E>
using LEARNER::learner< T, E >::finish_fptr_type = void (*)(void*)

Definition at line 157 of file learner.h.

Constructor & Destructor Documentation

◆ learner()

template<class T, class E>
LEARNER::learner< T, E >::learner ( )
inlineprivate

Definition at line 149 of file learner.h.

149 {}; // Should only be able to construct a learner through init_learner function

Member Function Documentation

◆ end_examples()

template<class T, class E>
void LEARNER::learner< T, E >::end_examples ( )
inline

◆ end_pass()

template<class T, class E>
void LEARNER::learner< T, E >::end_pass ( )
inline

Definition at line 280 of file learner.h.

Referenced by LEARNER::end_pass(), and LEARNER::learner< CB_EXPLORE::cb_explore, example >::end_pass().

281  {
283  if (end_pass_fd.base)
285  } // autorecursive
base_learner * base
Definition: learner.h:47
void end_pass()
Definition: learner.h:280
func_data end_pass_fd
Definition: learner.h:144

◆ finish()

template<class T, class E>
void LEARNER::learner< T, E >::finish ( )
inline

Definition at line 266 of file learner.h.

Referenced by LEARNER::learner< CB_EXPLORE::cb_explore, example >::finish(), and VW::finish().

267  {
268  if (finisher_fd.data)
269  {
271  }
272  learner_data.~shared_ptr<void>();
273  if (finisher_fd.base)
274  {
276  free(finisher_fd.base);
277  }
278  }
void finish()
Definition: learner.h:266
base_learner * base
Definition: learner.h:47
func_data finisher_fd
Definition: learner.h:146
std::shared_ptr< void > learner_data
Definition: learner.h:148

◆ finish_example()

template<class T, class E>
void LEARNER::learner< T, E >::finish_example ( vw all,
E &  ec 
)
inline

Definition at line 302 of file learner.h.

Referenced by vw::finish_example(), LEARNER::learn_ex(), and LEARNER::learn_multi_ex().

303  {
305  }
finish_example_data finish_example_fd
Definition: learner.h:142

◆ init_driver()

template<class T, class E>
void LEARNER::learner< T, E >::init_driver ( )
inline

Definition at line 298 of file learner.h.

Referenced by VW::initialize().

298 { init_fd.func(init_fd.data); }
func_data init_fd
Definition: learner.h:139

◆ init_learner()

template<class T, class E>
template<class L >
static learner<T, E>& LEARNER::learner< T, E >::init_learner ( T *  dat,
L *  base,
void(*)(T &, L &, E &)  learn,
void(*)(T &, L &, E &)  predict,
size_t  ws,
prediction_type::prediction_type_t  pred_type 
)
inlinestatic

Definition at line 314 of file learner.h.

316  {
317  learner<T, E>& ret = calloc_or_throw<learner<T, E> >();
318 
319  if (base != nullptr)
320  { // a reduction
321 
322  // This is a copy assignment into the current object. The purpose is to copy all of the
323  // function data objects so that if this reduction does not define a function such as
324  // save_load then calling save_load on this object will essentially result in forwarding the
325  // call the next reduction that actually implements it.
326  ret = *(learner<T, E>*)(base);
327 
328  ret.learn_fd.base = make_base(*base);
329  ret.sensitivity_fd.sensitivity_f = (sensitivity_data::fn)recur_sensitivity;
330  ret.finisher_fd.data = dat;
331  ret.finisher_fd.base = make_base(*base);
332  ret.finisher_fd.func = (func_data::fn)noop;
333  ret.weights = ws;
334  ret.increment = base->increment * ret.weights;
335  }
336  else // a base learner
337  {
338  ret.weights = 1;
339  ret.increment = ws;
340  ret.end_pass_fd.func = (func_data::fn)noop;
341  ret.end_examples_fd.func = (func_data::fn)noop;
342  ret.init_fd.func = (func_data::fn)noop;
343  ret.save_load_fd.save_load_f = (save_load_data::fn)noop_sl;
344  ret.finisher_fd.data = dat;
345  ret.finisher_fd.func = (func_data::fn)noop;
346  ret.sensitivity_fd.sensitivity_f = (sensitivity_data::fn)noop_sensitivity;
347  ret.finish_example_fd.data = dat;
348  ret.finish_example_fd.finish_example_f = (finish_example_data::fn)return_simple_example;
349  }
350 
351  ret.learner_data = std::shared_ptr<T>(dat, [](T* ptr) {
352  ptr->~T();
353  free(ptr);
354  });
355 
356  ret.learn_fd.data = dat;
357  ret.learn_fd.learn_f = (learn_data::fn)learn;
358  ret.learn_fd.update_f = (learn_data::fn)learn;
359  ret.learn_fd.predict_f = (learn_data::fn)predict;
360  ret.learn_fd.multipredict_f = nullptr;
361  ret.pred_type = pred_type;
362  ret.is_multiline = std::is_same<multi_ex, E>::value;
363 
364  return ret;
365  }
void predict(E &ec, size_t i=0)
Definition: learner.h:169
void(*)(void *, io_buf &, bool read, bool text) fn
Definition: learner.h:83
base_learner * make_base(learner< T, E > &base)
Definition: learner.h:462
float(*)(void *data, base_learner &base, example &ex) fn
Definition: learner.h:76
float recur_sensitivity(void *, base_learner &base, example &ec)
Definition: learner.cc:306
void(*)(vw &, void *data, void *ex) fn
Definition: learner.h:91
void(*)(void *data) fn
Definition: learner.h:45
void(*)(void *data, base_learner &base, void *ex) fn
Definition: learner.h:62
float noop_sensitivity(void *, base_learner &, example &)
Definition: learner.h:103
prediction_type::prediction_type_t pred_type
Definition: learner.h:149
void noop_sl(void *, io_buf &, bool, bool)
Definition: learner.h:101
void learn(E &ec, size_t i=0)
Definition: learner.h:160
void noop(void *)
Definition: learner.h:102
void return_simple_example(vw &all, void *, example &ec)

◆ learn()

template<class T, class E>
void LEARNER::learner< T, E >::learn ( E &  ec,
size_t  i = 0 
)
inline

Definition at line 160 of file learner.h.

Referenced by GEN_CS::call_cs_ldf(), do_actual_learning_ldf(), CSOAA::do_actual_learning_oaa(), CSOAA::do_actual_learning_wap(), ect_predict(), ect_train(), ExpReplay::end_pass(), Search::generate_training_example(), CB_ALGS::get_cost_pred(), CSOAA::inner_loop(), inner_loop(), VW::autolink::learn(), VW::topk::learn(), recall_tree_ns::learn(), vw::learn(), learn(), memory_tree_ns::learn_at_leaf_random(), learn_bandit_adf(), learn_randomized(), learn_sup_adf(), LEARNER::multiline_learn_or_predict(), VW::shared_feature_merger::predict_or_learn(), ExpReplay::predict_or_learn(), CLASSWEIGHTS::predict_or_learn(), CB_ALGS::predict_or_learn(), MWT::predict_or_learn(), predict_or_learn(), MARGINAL::predict_or_learn(), predict_or_learn_active(), predict_or_learn_active_cover(), predict_or_learn_adaptive(), predict_or_learn_adf(), CB_EXPLORE::predict_or_learn_bag(), CB_EXPLORE::predict_or_learn_cover(), CB_EXPLORE::predict_or_learn_first(), CB_EXPLORE::predict_or_learn_greedy(), predict_or_learn_logistic(), predict_or_learn_multi(), predict_or_learn_simulation(), predict_or_learn_with_confidence(), memory_tree_ns::return_reward_from_node(), memory_tree_ns::single_query_and_learn(), train_node(), recall_tree_ns::train_node(), memory_tree_ns::train_node(), and memory_tree_ns::train_one_against_some_at_leaf().

161  {
162  assert((is_multiline && std::is_same<multi_ex, E>::value) ||
163  (!is_multiline && std::is_same<example, E>::value)); // sanity check under debug compile
164  increment_offset(ec, increment, i);
165  learn_fd.learn_f(learn_fd.data, *learn_fd.base, (void*)&ec);
166  decrement_offset(ec, increment, i);
167  }
learn_data learn_fd
Definition: learner.h:140
base_learner * base
Definition: learner.h:67
void increment_offset(example &ex, const size_t increment, const size_t i)
Definition: learner.h:110
void decrement_offset(example &ex, const size_t increment, const size_t i)
Definition: learner.h:120
bool is_multiline
Definition: learner.h:154
size_t increment
Definition: learner.h:153

◆ multipredict()

template<class T, class E>
void LEARNER::learner< T, E >::multipredict ( E &  ec,
size_t  lo,
size_t  count,
polyprediction pred,
bool  finalize_predictions 
)
inline

Definition at line 178 of file learner.h.

Referenced by multipredict(), ExpReplay::multipredict(), CSOAA::predict_or_learn(), predict_or_learn(), and predict_or_learn_multi().

179  {
180  assert((is_multiline && std::is_same<multi_ex, E>::value) ||
181  (!is_multiline && std::is_same<example, E>::value)); // sanity check under debug compile
182  if (learn_fd.multipredict_f == NULL)
183  {
184  increment_offset(ec, increment, lo);
185  for (size_t c = 0; c < count; c++)
186  {
187  learn_fd.predict_f(learn_fd.data, *learn_fd.base, (void*)&ec);
188  if (finalize_predictions)
189  pred[c] = ec.pred; // TODO: this breaks for complex labels because = doesn't do deep copy!
190  else
191  pred[c].scalar = ec.partial_prediction;
192  // pred[c].scalar = finalize_prediction ec.partial_prediction; // TODO: this breaks for complex labels because =
193  // doesn't do deep copy! // note works if ec.partial_prediction, but only if finalize_prediction is run????
194  increment_offset(ec, increment, 1);
195  }
196  decrement_offset(ec, increment, lo + count);
197  }
198  else
199  {
200  increment_offset(ec, increment, lo);
201  learn_fd.multipredict_f(learn_fd.data, *learn_fd.base, (void*)&ec, count, increment, pred, finalize_predictions);
202  decrement_offset(ec, increment, lo);
203  }
204  }
learn_data learn_fd
Definition: learner.h:140
float scalar
Definition: example.h:45
base_learner * base
Definition: learner.h:67
multi_fn multipredict_f
Definition: learner.h:71
void increment_offset(example &ex, const size_t increment, const size_t i)
Definition: learner.h:110
void decrement_offset(example &ex, const size_t increment, const size_t i)
Definition: learner.h:120
bool is_multiline
Definition: learner.h:154
size_t increment
Definition: learner.h:153
constexpr uint64_t c
Definition: rand48.cc:12

◆ predict()

template<class T, class E>
void LEARNER::learner< T, E >::predict ( E &  ec,
size_t  i = 0 
)
inline

Definition at line 169 of file learner.h.

Referenced by GEN_CS::call_cs_ldf(), memory_tree_ns::compute_hamming_loss_via_oas(), do_actual_learning_ldf(), find_cost_range(), CB_ALGS::get_cost_pred(), CSOAA::inner_loop(), inner_loop(), vw::learn(), CSOAA::make_single_prediction(), LEARNER::multiline_learn_or_predict(), recall_tree_ns::oas_predict(), memory_tree_ns::pick_nearest(), VW::autolink::predict(), VW::topk::predict(), predict(), vw::predict(), memory_tree_ns::predict(), predict_bandit_adf(), recall_tree_ns::predict_from(), VW::shared_feature_merger::predict_or_learn(), ExpReplay::predict_or_learn(), CLASSWEIGHTS::predict_or_learn(), CB_ALGS::predict_or_learn(), MWT::predict_or_learn(), predict_or_learn(), MARGINAL::predict_or_learn(), predict_or_learn_active(), predict_or_learn_active_cover(), predict_or_learn_adaptive(), predict_or_learn_adf(), CB_EXPLORE::predict_or_learn_bag(), CB_EXPLORE::predict_or_learn_first(), CB_EXPLORE::predict_or_learn_greedy(), predict_or_learn_logistic(), predict_or_learn_multi(), predict_or_learn_simulation(), predict_or_learn_with_confidence(), predict_sublearner_adf(), VW::autolink::prepare_example(), query_decision(), memory_tree_ns::return_reward_from_node(), memory_tree_ns::route_to_leaf(), sensitivity(), Search::single_prediction_LDF(), Search::single_prediction_notLDF(), memory_tree_ns::split_leaf(), train_node(), recall_tree_ns::train_node(), memory_tree_ns::train_node(), VW_Predict(), and VW_PredictCostSensitive().

170  {
171  assert((is_multiline && std::is_same<multi_ex, E>::value) ||
172  (!is_multiline && std::is_same<example, E>::value)); // sanity check under debug compile
173  increment_offset(ec, increment, i);
174  learn_fd.predict_f(learn_fd.data, *learn_fd.base, (void*)&ec);
175  decrement_offset(ec, increment, i);
176  }
learn_data learn_fd
Definition: learner.h:140
base_learner * base
Definition: learner.h:67
void increment_offset(example &ex, const size_t increment, const size_t i)
Definition: learner.h:110
void decrement_offset(example &ex, const size_t increment, const size_t i)
Definition: learner.h:120
bool is_multiline
Definition: learner.h:154
size_t increment
Definition: learner.h:153

◆ save_load()

template<class T, class E>
void LEARNER::learner< T, E >::save_load ( io_buf io,
const bool  read,
const bool  text 
)
inline

Definition at line 251 of file learner.h.

Referenced by dump_regressor(), load_input_model(), parse_mask_regressor_args(), and LEARNER::learner< CB_EXPLORE::cb_explore, example >::save_load().

252  {
253  save_load_fd.save_load_f(save_load_fd.data, io, read, text);
254  if (save_load_fd.base)
255  save_load_fd.base->save_load(io, read, text);
256  }
void save_load(io_buf &io, const bool read, const bool text)
Definition: learner.h:251
save_load_data save_load_fd
Definition: learner.h:143
base_learner * base
Definition: learner.h:85

◆ sensitivity()

template<class T, class E>
float LEARNER::learner< T, E >::sensitivity ( example ec,
size_t  i = 0 
)
inline

Definition at line 242 of file learner.h.

Referenced by dis_test(), find_cost_range(), VW::cb_explore_adf::regcb::cb_explore_adf_regcb::get_cost_ranges(), predict_or_learn_active(), predict_or_learn_simulation(), predict_or_learn_with_confidence(), LEARNER::recur_sensitivity(), and sensitivity().

243  {
244  increment_offset(ec, increment, i);
245  const float ret = sensitivity_fd.sensitivity_f(sensitivity_fd.data, *learn_fd.base, ec);
246  decrement_offset(ec, increment, i);
247  return ret;
248  }
learn_data learn_fd
Definition: learner.h:140
base_learner * base
Definition: learner.h:67
void increment_offset(example &ex, const size_t increment, const size_t i)
Definition: learner.h:110
void decrement_offset(example &ex, const size_t increment, const size_t i)
Definition: learner.h:120
sensitivity_data sensitivity_fd
Definition: learner.h:141
size_t increment
Definition: learner.h:153

◆ set_end_examples()

template<class T, class E>
void LEARNER::learner< T, E >::set_end_examples ( void(*)(T &)  f)
inline

Definition at line 295 of file learner.h.

Referenced by audit_regressor_setup(), lda_setup(), and Search::setup().

learn_data learn_fd
Definition: learner.h:140
func_data end_examples_fd
Definition: learner.h:145
base_learner * base
Definition: learner.h:67
void(*)(void *data) fn
Definition: learner.h:45
func_data tuple_dbf(void *data, base_learner *base, void(*func)(void *))
Definition: learner.h:51
float f
Definition: cache.cc:40

◆ set_end_pass()

template<class T, class E>
void LEARNER::learner< T, E >::set_end_pass ( void(*)(T &)  f)
inline

Definition at line 286 of file learner.h.

Referenced by CSOAA::csldf_setup(), ExpReplay::expreplay_setup(), gd_mf_setup(), lda_setup(), lrq_setup(), memory_tree_setup(), nn_setup(), GD::setup(), Search::setup(), and stagewise_poly_setup().

learn_data learn_fd
Definition: learner.h:140
base_learner * base
Definition: learner.h:67
void(*)(void *data) fn
Definition: learner.h:45
func_data tuple_dbf(void *data, base_learner *base, void(*func)(void *))
Definition: learner.h:51
float f
Definition: cache.cc:40
func_data end_pass_fd
Definition: learner.h:144

◆ set_finish()

template<class T, class E>
void LEARNER::learner< T, E >::set_finish ( void(*)(T &)  f)
inline

Definition at line 265 of file learner.h.

Referenced by audit_regressor_setup(), explore_eval_setup(), mf_setup(), Search::setup(), and warm_cb_setup().

learn_data learn_fd
Definition: learner.h:140
base_learner * base
Definition: learner.h:67
func_data finisher_fd
Definition: learner.h:146
void(*)(void *) finish_fptr_type
Definition: learner.h:157
func_data tuple_dbf(void *data, base_learner *base, void(*func)(void *))
Definition: learner.h:51
float f
Definition: cache.cc:40

◆ set_finish_example()

template<class T, class E>
void LEARNER::learner< T, E >::set_finish_example ( void(*)(vw &all, T &, E &)  f)
inline

◆ set_init_driver()

template<class T, class E>
void LEARNER::learner< T, E >::set_init_driver ( void(*)(T &)  f)
inline

Definition at line 299 of file learner.h.

Referenced by audit_regressor_setup().

learn_data learn_fd
Definition: learner.h:140
base_learner * base
Definition: learner.h:67
func_data init_fd
Definition: learner.h:139
void(*)(void *data) fn
Definition: learner.h:45
func_data tuple_dbf(void *data, base_learner *base, void(*func)(void *))
Definition: learner.h:51
float f
Definition: cache.cc:40

◆ set_learn()

template<class T, class E>
template<class L >
void LEARNER::learner< T, E >::set_learn ( void(*)(T &, L &, E &)  u)
inline

Definition at line 212 of file learner.h.

Referenced by oaa_setup().

213  {
215  }
learn_data learn_fd
Definition: learner.h:140
void(*)(void *data, base_learner &base, void *ex) fn
Definition: learner.h:62

◆ set_multipredict()

template<class T, class E>
template<class L >
void LEARNER::learner< T, E >::set_multipredict ( void(*)(T &, L &, E &, size_t, size_t, polyprediction *, bool)  u)
inline

Definition at line 217 of file learner.h.

Referenced by nn_setup(), scorer_setup(), and GD::setup().

218  {
220  }
learn_data learn_fd
Definition: learner.h:140
void(*)(void *data, base_learner &base, void *ex, size_t count, size_t step, polyprediction *pred, bool finalize_predictions) multi_fn
Definition: learner.h:64
multi_fn multipredict_f
Definition: learner.h:71

◆ set_predict()

template<class T, class E>
template<class L >
void LEARNER::learner< T, E >::set_predict ( void(*)(T &, L &, E &)  u)
inline

Definition at line 207 of file learner.h.

208  {
210  }
learn_data learn_fd
Definition: learner.h:140
void(*)(void *data, base_learner &base, void *ex) fn
Definition: learner.h:62

◆ set_save_load()

template<class T, class E>
void LEARNER::learner< T, E >::set_save_load ( void(*)(T &, io_buf &, bool, bool)  sl)
inline

◆ set_sensitivity()

template<class T, class E>
void LEARNER::learner< T, E >::set_sensitivity ( float(*)(T &data, base_learner< T, E > &base, example &)  u)
inline

Definition at line 237 of file learner.h.

Referenced by baseline_setup(), and GD::setup().

238  {
241  }
learn_data learn_fd
Definition: learner.h:140
float(*)(void *data, base_learner &base, example &ex) fn
Definition: learner.h:76
sensitivity_data sensitivity_fd
Definition: learner.h:141

◆ set_update()

template<class T, class E>
template<class L >
void LEARNER::learner< T, E >::set_update ( void(*)(T &data, L &base, E &)  u)
inline

Definition at line 231 of file learner.h.

Referenced by scorer_setup(), and GD::setup().

232  {
234  }
learn_data learn_fd
Definition: learner.h:140
void(*)(void *data, base_learner &base, void *ex) fn
Definition: learner.h:62

◆ update()

template<class T, class E>
void LEARNER::learner< T, E >::update ( E &  ec,
size_t  i = 0 
)
inline

Definition at line 222 of file learner.h.

Referenced by predict_or_learn(), predict_or_learn_multi(), and update().

223  {
224  assert((is_multiline && std::is_same<multi_ex, E>::value) ||
225  (!is_multiline && std::is_same<example, E>::value)); // sanity check under debug compile
226  increment_offset(ec, increment, i);
227  learn_fd.update_f(learn_fd.data, *learn_fd.base, (void*)&ec);
228  decrement_offset(ec, increment, i);
229  }
learn_data learn_fd
Definition: learner.h:140
base_learner * base
Definition: learner.h:67
void increment_offset(example &ex, const size_t increment, const size_t i)
Definition: learner.h:110
void decrement_offset(example &ex, const size_t increment, const size_t i)
Definition: learner.h:120
bool is_multiline
Definition: learner.h:154
size_t increment
Definition: learner.h:153

Member Data Documentation

◆ end_examples_fd

template<class T, class E>
func_data LEARNER::learner< T, E >::end_examples_fd
private

◆ end_pass_fd

template<class T, class E>
func_data LEARNER::learner< T, E >::end_pass_fd
private

◆ finish_example_fd

template<class T, class E>
finish_example_data LEARNER::learner< T, E >::finish_example_fd
private

◆ finisher_fd

template<class T, class E>
func_data LEARNER::learner< T, E >::finisher_fd
private

◆ increment

template<class T, class E>
size_t LEARNER::learner< T, E >::increment

◆ init_fd

template<class T, class E>
func_data LEARNER::learner< T, E >::init_fd
private

◆ is_multiline

template<class T, class E>
bool LEARNER::learner< T, E >::is_multiline

◆ learn_fd

template<class T, class E>
learn_data LEARNER::learner< T, E >::learn_fd
private

◆ learner_data

template<class T, class E>
std::shared_ptr<void> LEARNER::learner< T, E >::learner_data
private

◆ pred_type

template<class T, class E>
prediction_type::prediction_type_t LEARNER::learner< T, E >::pred_type

◆ save_load_fd

template<class T, class E>
save_load_data LEARNER::learner< T, E >::save_load_fd
private

◆ sensitivity_fd

template<class T, class E>
sensitivity_data LEARNER::learner< T, E >::sensitivity_fd
private

◆ weights

template<class T, class E>
size_t LEARNER::learner< T, E >::weights

The documentation for this struct was generated from the following files: