Vowpal Wabbit
Functions
audit_regressor.h File Reference

Go to the source code of this file.

Functions

LEARNER::base_learneraudit_regressor_setup (VW::config::options_i &options, vw &all)
 

Function Documentation

◆ audit_regressor_setup()

LEARNER::base_learner* audit_regressor_setup ( VW::config::options_i options,
vw all 
)

Definition at line 246 of file audit_regressor.cc.

References VW::config::option_group_definition::add(), VW::config::options_i::add_and_parse(), LEARNER::as_singleline(), vw::audit, audit_regressor(), end_examples(), VW::finish(), VW::finish_example(), init_driver(), LEARNER::init_learner(), VW::config::make_option(), vw::numpasses, LEARNER::learner< T, E >::set_end_examples(), LEARNER::learner< T, E >::set_finish(), LEARNER::learner< T, E >::set_finish_example(), LEARNER::learner< T, E >::set_init_driver(), setup_base(), vw::stdin_off, THROW, VW::config::options_i::was_supplied(), and io_buf::WRITE.

Referenced by parse_reductions().

247 {
248  std::string out_file;
249 
250  option_group_definition new_options("Audit Regressor");
251  new_options.add(make_option("audit_regressor", out_file)
252  .keep()
253  .help("stores feature names and their regressor values. Same dataset must be used for both "
254  "regressor training and this mode."));
255  options.add_and_parse(new_options);
256 
257  if (!options.was_supplied("audit_regressor"))
258  return nullptr;
259 
260  if (out_file.empty())
261  THROW("audit_regressor argument (output filename) is missing.");
262 
263  if (all.numpasses > 1)
264  THROW("audit_regressor can't be used with --passes > 1.");
265 
266  all.audit = true;
267 
268  auto dat = scoped_calloc_or_throw<audit_regressor_data>();
269  dat->all = &all;
270  dat->ns_pre = new std::vector<std::string>(); // explicitly invoking std::vector's constructor
271  dat->out_file = new io_buf();
272  dat->out_file->open_file(out_file.c_str(), all.stdin_off, io_buf::WRITE);
273 
278  ret.set_finish(finish);
280 
281  return LEARNER::make_base<audit_regressor_data>(ret);
282 }
void set_init_driver(void(*f)(T &))
Definition: learner.h:299
void finish_example(vw &all, audit_regressor_data &dd, example &ec)
static constexpr int WRITE
Definition: io_buf.h:72
virtual void add_and_parse(const option_group_definition &group)=0
single_learner * as_singleline(learner< T, E > *l)
Definition: learner.h:476
void set_finish_example(void(*f)(vw &all, T &, E &))
Definition: learner.h:307
learner< T, E > & init_learner(free_ptr< T > &dat, L *base, void(*learn)(T &, L &, E &), void(*predict)(T &, L &, E &), size_t ws, prediction_type::prediction_type_t pred_type)
Definition: learner.h:369
virtual bool was_supplied(const std::string &key)=0
Definition: io_buf.h:54
void init_driver(audit_regressor_data &dat)
size_t numpasses
Definition: global_data.h:451
typed_option< T > make_option(std::string name, T &location)
Definition: options.h:80
void set_finish(void(*f)(T &))
Definition: learner.h:265
void audit_regressor(audit_regressor_data &rd, LEARNER::single_learner &base, example &ec)
void end_examples(audit_regressor_data &d)
void finish(audit_regressor_data &dat)
bool audit
Definition: global_data.h:486
LEARNER::base_learner * setup_base(options_i &options, vw &all)
Definition: parse_args.cc:1222
bool stdin_off
Definition: global_data.h:527
#define THROW(args)
Definition: vw_exception.h:181
void set_end_examples(void(*f)(T &))
Definition: learner.h:295