498 auto data = scoped_calloc_or_throw<log_multi>();
500 new_options.add(
make_option(
"log_multi", data->k).keep().help(
"Use online tree for multiclass"))
501 .
add(
make_option(
"no_progress", data->progress).help(
"disable progressive validation"))
502 .
add(
make_option(
"swap_resistance", data->swap_resist).default_value(4).help(
"disable progressive validation"))
505 .help(
"higher = more resistance to swap, default=4"));
511 data->progress = !data->progress;
514 float loss_parameter = 0.5;
518 data->max_predictors = data->k - 1;
base_learner * make_base(learner< T, E > &base)
virtual void add_and_parse(const option_group_definition &group)=0
single_learner * as_singleline(learner< T, E > *l)
virtual bool was_supplied(const std::string &key)=0
int add(svm_params ¶ms, svm_example *fec)
void save_load_tree(log_multi &b, io_buf &model_file, bool read, bool text)
typed_option< T > make_option(std::string name, T &location)
void init_tree(log_multi &d)
void learn(log_multi &b, single_learner &base, example &ec)
learner< T, E > & init_multiclass_learner(free_ptr< T > &dat, L *base, void(*learn)(T &, L &, E &), void(*predict)(T &, L &, E &), parser *p, size_t ws, prediction_type::prediction_type_t pred_type=prediction_type::multiclass)
LEARNER::base_learner * setup_base(options_i &options, vw &all)
loss_function * getLossFunction(vw &all, std::string funcName, float function_parameter)
void predict(log_multi &b, single_learner &base, example &ec)