Vowpal Wabbit
Public Attributes | List of all members
GD::gd Struct Reference

Public Attributes

double total_weight
 
size_t no_win_counter
 
size_t early_stop_thres
 
float initial_constant
 
float neg_norm_power
 
float neg_power_t
 
float sparse_l2
 
float update_multiplier
 
void(* predict )(gd &, base_learner &, example &)
 
void(* learn )(gd &, base_learner &, example &)
 
void(* update )(gd &, base_learner &, example &)
 
float(* sensitivity )(gd &, base_learner &, example &)
 
void(* multipredict )(gd &, base_learner &, example &, size_t, size_t, polyprediction *, bool)
 
bool adaptive_input
 
bool normalized_input
 
bool adax
 
vwall
 

Detailed Description

Definition at line 43 of file gd.cc.

Member Data Documentation

◆ adaptive_input

bool GD::gd::adaptive_input

Definition at line 59 of file gd.cc.

Referenced by GD::save_load_online_state().

◆ adax

bool GD::gd::adax

Definition at line 61 of file gd.cc.

Referenced by GD::set_learn().

◆ all

vw* GD::gd::all

◆ early_stop_thres

size_t GD::gd::early_stop_thres

Definition at line 48 of file gd.cc.

Referenced by GD::end_pass().

◆ initial_constant

float GD::gd::initial_constant

Definition at line 49 of file gd.cc.

Referenced by GD::save_load().

◆ learn

void(* GD::gd::learn) (gd &, base_learner &, example &)

Definition at line 55 of file gd.cc.

Referenced by GD::set_learn().

◆ multipredict

void(* GD::gd::multipredict) (gd &, base_learner &, example &, size_t, size_t, polyprediction *, bool)

Definition at line 58 of file gd.cc.

Referenced by GD::setup().

◆ neg_norm_power

float GD::gd::neg_norm_power

Definition at line 50 of file gd.cc.

Referenced by GD::get_pred_per_update().

◆ neg_power_t

float GD::gd::neg_power_t

Definition at line 51 of file gd.cc.

Referenced by GD::get_pred_per_update(), and GD::get_scale().

◆ no_win_counter

size_t GD::gd::no_win_counter

Definition at line 47 of file gd.cc.

Referenced by GD::end_pass().

◆ normalized_input

bool GD::gd::normalized_input

Definition at line 60 of file gd.cc.

Referenced by GD::save_load_online_state().

◆ predict

void(* GD::gd::predict) (gd &, base_learner &, example &)

Definition at line 54 of file gd.cc.

Referenced by GD::learn(), and GD::setup().

◆ sensitivity

float(* GD::gd::sensitivity) (gd &, base_learner &, example &)

Definition at line 57 of file gd.cc.

Referenced by GD::set_learn(), and GD::setup().

◆ sparse_l2

float GD::gd::sparse_l2

Definition at line 52 of file gd.cc.

Referenced by GD::compute_update(), and GD::set_learn().

◆ total_weight

double GD::gd::total_weight

Definition at line 46 of file gd.cc.

Referenced by GD::get_pred_per_update(), and GD::save_load().

◆ update

void(* GD::gd::update) (gd &, base_learner &, example &)

Definition at line 56 of file gd.cc.

Referenced by GD::set_learn(), and GD::setup().

◆ update_multiplier

float GD::gd::update_multiplier

Definition at line 53 of file gd.cc.

Referenced by GD::get_pred_per_update(), and GD::train().


The documentation for this struct was generated from the following file: