import vowpalwabbit
def my_predict(vw, ex):
pp = 0.0
for f, v in ex.iter_features():
pp += vw.get_weight(f) * v
return pp
def ensure_close(a, b, eps=1e-6):
if abs(a - b) > eps:
raise Exception(
"test failed: expected "
+ str(a)
+ " and "
+ str(b)
+ " to be "
+ str(eps)
+ "-close, but they differ by "
+ str(abs(a - b))
)
###############################################################################
vw = vowpalwabbit.Workspace("--quiet")
###############################################################################
vw.learn("1 |x a b")
###############################################################################
print("# do some stuff with a read example:")
ex = vw.example("1 |x a b |y c")
ex.learn()
ex.learn()
ex.learn()
ex.learn()
updated_pred = ex.get_updated_prediction()
print("current partial prediction =", updated_pred)
# compute our own prediction
print(
" my view of example =",
str([(f, v, vw.get_weight(f)) for f, v in ex.iter_features()]),
)
my_pred = my_predict(vw, ex)
print(" my partial prediction =", my_pred)
ensure_close(updated_pred, my_pred)
print("")
vw.finish_example(ex)
###############################################################################
print("# make our own example from scratch")
ex = vw.example()
ex.set_label_string("0")
ex.push_features("x", ["a", "b"])
ex.push_features("y", [("c", 1.0)])
ex.setup_example()
print(
" my view of example =",
str([(f, v, vw.get_weight(f)) for f, v in ex.iter_features()]),
)
my_pred2 = my_predict(vw, ex)
print(" my partial prediction =", my_pred2)
ensure_close(my_pred, my_pred2)
ex.learn()
ex.learn()
ex.learn()
ex.learn()
print(" final partial prediction =", ex.get_updated_prediction())
ensure_close(ex.get_updated_prediction(), my_predict(vw, ex))
print("")
vw.finish_example(ex)
###############################################################################
exList = []
for i in range(120):
ex = vw.example()
exList.append(ex)
# this is the safe way to delete the examples for VW to reuse:
for ex in exList:
vw.finish_example(ex)
exList = [] # this should __del__ the examples, we hope :)
for i in range(120):
ex = vw.example()
exList.append(ex)
for ex in exList:
vw.finish_example(ex)
###############################################################################
for i in range(2):
ex = vw.example("1 foo| a b")
ex.learn()
print("tag =", ex.get_tag())
print("partial pred =", ex.get_partial_prediction())
print("loss =", ex.get_loss())
print("label =", ex.get_label())
vw.finish_example(ex)
# to be safe, finish explicity (should happen by default anyway)
vw.finish()
###############################################################################
print("# test some save/load behavior")
vw = vowpalwabbit.Workspace("--quiet -f test.model")
ex = vw.example("1 |x a b |y c")
ex.learn()
ex.learn()
ex.learn()
ex.learn()
before_save = ex.get_updated_prediction()
print("before saving, prediction =", before_save)
vw.finish_example(ex)
vw.finish() # this should create the file
# now re-start vw by loading that model
vw = vowpalwabbit.Workspace("--quiet -i test.model")
ex = vw.example("1 |x a b |y c") # test example
ex.learn()
after_save = ex.get_partial_prediction()
print(" after saving, prediction =", after_save)
vw.finish_example(ex)
ensure_close(before_save, after_save)
vw.finish() # this should create the file
print("done!")