vowpalwabbit.pyvw.pylibvw#
The Python bindings employ native bindings and then inherit from this in Python
to add extra functionality. The classes on this page should not be directly
instantiated. The types in vowpalwabbit
should be used instead.
- class vowpalwabbit.pyvw.pylibvw.vw#
Bases:
instance
the basic VW object that holds with weight vector, parser, etc.
- __init__((object)arg1, (list)arg2) object #
__init__( (object)arg1, (list)arg2, (vw_log)arg3) -> object
- audit_example((vw)arg1, (example)arg2) None : #
print example audit information
- finish((vw)arg1) None : #
stop VW by calling finish (and, eg, write weights to disk)
- get_arguments((vw)arg1) str : #
return the arguments after resolving all dependencies
- get_enabled_reductions((vw)arg1) list : #
return the list of names of the enabled reductions
- get_holdout_sum_loss((vw)arg1) float : #
return the total cumulative holdout loss suffered so far
- get_id((vw)arg1) str : #
return the model id
- get_learner_metrics((vw)arg1) dict : #
get current learner stack metrics. returns empty dict if –extra_metrics was not supplied.
- get_options((vw)arg1, (object)arg2, (bool)arg3) object : #
get available vw options
- get_search_ptr((vw)arg1) search : #
return a pointer to the search data structure
- get_stride((vw)arg1) int : #
return the internal stride
- get_sum_loss((vw)arg1) float : #
return the total cumulative loss suffered so far
- get_weight((vw)arg1, (int)arg2, (int)arg3) float : #
get the weight for a particular index
- get_weighted_examples((vw)arg1) float : #
return the total weight of examples so far
- hash_feature((vw)arg1, (str)arg2, (int)arg3) int : #
given a feature string (arg2) and a hashed namespace (arg3), hash that feature
- hash_space((vw)arg1, (str)arg2) int : #
given a namespace (as a string), compute the hash of that namespace
- json_weights((vw)arg1) str : #
get json string of current weights
- lBinary = 1#
- lConditionalContextualBandit = 6#
- lContextualBandit = 4#
- lContextualBanditEval = 9#
- lContinuous = 8#
- lCostSensitive = 3#
- lDefault = 0#
- lMax = 5#
- lMulticlass = 2#
- lMultilabel = 10#
- lSimple = 1#
- lSlates = 7#
- learn((vw)arg1, (example)arg2) None : #
given a pyvw example, learn (and predict) on that example
- learn_multi((vw)arg1, (list)arg2) None : #
given a list pyvw examples, learn (and predict) on those examples
- num_weights((vw)arg1) int : #
how many weights are we learning?
- pACTION_PDF_VALUE = 9#
- pACTION_PROBS = 3#
- pACTION_SCORES = 2#
- pACTIVE_MULTICLASS = 11#
- pDECISION_SCORES = 8#
- pMULTICLASS = 4#
- pMULTICLASSPROBS = 7#
- pMULTILABELS = 5#
- pNOPRED = 12#
- pPDF = 10#
- pPROB = 6#
- pSCALAR = 0#
- pSCALARS = 1#
- predict((vw)arg1, (example)arg2) float : #
given a pyvw example, predict on that example
- predict_multi((vw)arg1, (list)arg2) None : #
given a list of pyvw examples, predict on that example
- run_parser((vw)arg1) None : #
parse external data file
- save((vw)arg1, (str)arg2) None : #
save model to filename
- set_weight((vw)arg1, (int)arg2, (int)arg3, (float)arg4) None : #
set the weight for a particular index
- setup_example((vw)arg1, (example)arg2) None : #
given an example that you’ve created by hand, prepare it for learning (eg, compute quadratic feature)
- tACTION = 1#
- tSHARED = 0#
- tSLOT = 2#
- tUNSET = 3#
- unsetup_example((vw)arg1, (example)arg2) None : #
reverse the process of setup, so that you can go back and modify this example
- class vowpalwabbit.pyvw.pylibvw.example#
Bases:
instance
- __init__((object)arg1, (vw)arg2, (int)arg3, (str)arg4) object : #
Given a string as an argument parse that into a VW example (and run setup on it) – default to multiclass label type
- __init__( (object)arg1, (vw)arg2, (int)arg3) -> object :
Construct an empty (non setup) example; you must provide a label type (vw.lBinary, vw.lMulticlass, etc.)
- __init__( (object)arg1, (vw)arg2, (int)arg3, (example)arg4) -> object :
Create a new example object pointing to an existing object.
- ensure_namespace_exists((example)arg1, (int)arg2) None : #
Add a new namespace if it doesn’t already exist
- erase_namespace((example)arg1, (int)arg2) None : #
Remove all the features from a given namespace
- feature((example)arg1, (int)arg2, (int)arg3) int : #
Get the feature id for the ith feature in a given namespace id (id=character-ord)
- feature_weight((example)arg1, (int)arg2, (int)arg3) float : #
The the feature value (weight) per .feature(…)
- get_action_pdf_value((example)arg1) tuple : #
Get action and pdf value from example prediction
- get_action_scores((example)arg1) list : #
Get action scores from example prediction
- get_active_multiclass((example)arg1) tuple : #
Get active multiclass from example prediction
- get_cb_continuous_class((example)arg1, (int)arg2) int : #
Assuming a cb_continuous label type, get the label at a given index (i=0.. get_cb_continuous_num_costs)
- get_cb_continuous_cost((example)arg1, (int)arg2) float : #
Assuming a cb_continuous label type, get the cost at a given index (i=0.. get_cb_continuous_num_costs)
- get_cb_continuous_num_costs((example)arg1) int : #
Assuming a cb_continuous label type, get the total number of costs
- get_cb_continuous_pdf_value((example)arg1, (int)arg2) float : #
Assuming a cb_continuous label type, get the pdf_value at a given index (i=0.. get_cb_continuous_num_costs)
- get_cb_eval_action((example)arg1) int : #
Assuming a cb_eval label type, get action
- get_cb_eval_class((example)arg1, (int)arg2) int : #
Assuming a cb_eval label type, get the label for a given pair (i=0.. get_cb_eval_num_costs)
- get_cb_eval_cost((example)arg1, (int)arg2) float : #
Assuming a cb_eval label type, get the cost for a given pair (i=0.. get_cb_eval_num_costs)
- get_cb_eval_num_costs((example)arg1) int : #
Assuming a cb_eval label type, get the total number of label/cost pairs
- get_cb_eval_partial_prediction((example)arg1, (int)arg2) float : #
Assuming a cb_eval label type, get the partial prediction for a given pair (i=0.. get_cb_eval_num_costs)
- get_cb_eval_probability((example)arg1, (int)arg2) float : #
Assuming a cb_eval label type, get the bandits probability for a given pair (i=0.. get_cb_eval_num_costs)
- get_cb_eval_weight((example)arg1) int : #
Assuming a cb_eval label type, get weight
- get_cbandits_class((example)arg1, (int)arg2) int : #
Assuming a contextual_bandits label type, get the label for a given pair (i=0.. get_cbandits_num_costs)
- get_cbandits_cost((example)arg1, (int)arg2) float : #
Assuming a contextual_bandits label type, get the cost for a given pair (i=0.. get_cbandits_num_costs)
- get_cbandits_num_costs((example)arg1) int : #
Assuming a contextual_bandits label type, get the total number of label/cost pairs
- get_cbandits_partial_prediction((example)arg1, (int)arg2) float : #
Assuming a contextual_bandits label type, get the partial prediction for a given pair (i=0.. get_cbandits_num_costs)
- get_cbandits_prediction((example)arg1) int : #
Assuming a contextual_bandits label type, get the prediction
- get_cbandits_probability((example)arg1, (int)arg2) float : #
Assuming a contextual_bandits label type, get the bandits probability for a given pair (i=0.. get_cbandits_num_costs)
- get_cbandits_weight((example)arg1) int : #
Assuming a contextual_bandits label type, get the weight
- get_ccb_action((example)arg1, (int)arg2) int : #
Assuming a conditional_contextual_bandits label type, get the action of example at index i
- get_ccb_cost((example)arg1) float : #
Assuming a conditional_contextual_bandits label type, get the cost of the given label
- get_ccb_explicitly_included_actions((example)arg1) list : #
Assuming a conditional_contextual_bandits label type, get the array of explicitly included actions for the slot
- get_ccb_has_outcome((example)arg1) bool : #
Assuming a conditional_contextual_bandits label type, verify if it has an outcome.
- get_ccb_num_explicitly_included_actions((example)arg1) int : #
Assuming a conditional_contextual_bandits label type, get the number of included actions.
- get_ccb_num_probabilities((example)arg1) int : #
Assuming a conditional_contextual_bandits label type, get number of actions in example
- get_ccb_probability((example)arg1, (int)arg2) float : #
Assuming a conditional_contextual_bandits label type, get the probability of example at index i
- get_ccb_type((example)arg1) int : #
Assuming a conditional_contextual_bandits label type, get the type of example
- get_ccb_weight((example)arg1) float : #
Assuming a conditional_contextual_bandits label type, get the weight of the example.
- get_costsensitive_class((example)arg1, (int)arg2) int : #
Assuming a cost_sensitive label type, get the label for a given pair (i=0.. get_costsensitive_num_costs)
- get_costsensitive_cost((example)arg1, (int)arg2) float : #
Assuming a cost_sensitive label type, get the cost for a given pair (i=0.. get_costsensitive_num_costs)
- get_costsensitive_num_costs((example)arg1) int : #
Assuming a cost_sensitive label type, get the total number of label/cost pairs
- get_costsensitive_partial_prediction((example)arg1, (int)arg2) float : #
Assuming a cost_sensitive label type, get the partial prediction for a given pair (i=0.. get_costsensitive_num_costs)
- get_costsensitive_prediction((example)arg1) int : #
Assuming a cost_sensitive label type, get the prediction
- get_costsensitive_wap_value((example)arg1, (int)arg2) float : #
Assuming a cost_sensitive label type, get the weighted-all-pairs recomputed cost for a given pair (i=0.. get_costsensitive_num_costs)
- get_decision_scores((example)arg1) list : #
Get decision scores from example prediction
- get_example_counter((example)arg1) int : #
Returns the counter of total number of examples seen up to and including this one
- get_feature_number((example)arg1) int : #
Returns the total number of features for this example
- get_ft_offset((example)arg1) int : #
Returns the feature offset for this example (used, eg, by multiclass classification to bulk offset all features)
- get_loss((example)arg1) float : #
Returns the loss associated with this example
- get_multiclass_label((example)arg1) int : #
Assuming a multiclass label type, get the true label
- get_multiclass_prediction((example)arg1) int : #
Assuming a multiclass label type, get the prediction
- get_multiclass_weight((example)arg1) float : #
Assuming a multiclass label type, get the importance weight
- get_multilabel_labels((example)arg1) list : #
Assuming a multilabel label type, get a list of labels
- get_multilabel_predictions((example)arg1) list : #
Get multilabel predictions from example prediction
- get_nopred((example)arg1) str : #
Get nopred from example prediction
- get_partial_prediction((example)arg1) float : #
Returns the partial prediction associated with this example
- get_pdf((example)arg1) list : #
Get pdf from example prediction
- get_prob((example)arg1) float : #
Get probability from example prediction
- get_scalars((example)arg1) list : #
Get scalar values from example prediction
- get_simplelabel_initial((example)arg1) float : #
Assuming a simple_label label type, return the initial (baseline) prediction
- get_simplelabel_label((example)arg1) float : #
Assuming a simple_label label type, return the corresponding label (class/regression target/etc.)
- get_simplelabel_prediction((example)arg1) float : #
Assuming a simple_label label type, return the final prediction
- get_simplelabel_weight((example)arg1) float : #
Assuming a simple_label label type, return the importance weight
- get_slates_action((example)arg1, (int)arg2) int : #
Assuming a slates label type, get the action of example at index i
- get_slates_cost((example)arg1) float : #
Assuming a slates label type, get the cost of example
- get_slates_labeled((example)arg1) bool : #
Assuming a slates label type, get if example is labeled
- get_slates_num_probabilities((example)arg1) int : #
Assuming a slates label type, get number of actions in example
- get_slates_probability((example)arg1, (int)arg2) float : #
Assuming a slates label type, get the probability of example at index i
- get_slates_slot_id((example)arg1) int : #
Assuming a slates label type, get the slot_id of example
- get_slates_type((example)arg1) int : #
Assuming a slates label type, get the type of example
- get_slates_weight((example)arg1) float : #
Assuming a slates label type, get the weight of example
- get_tag((example)arg1) str : #
Returns the tag associated with this example
- get_topic_prediction((example)arg1, (int)arg2) float : #
For LDA models, returns the topic prediction for the topic id given
- get_total_sum_feat_sq((example)arg1) float : #
The total sum of feature-value squared for this example
- get_updated_prediction((example)arg1) float : #
Returns the partial prediction as if we had updated it after learning
- namespace((example)arg1, (int)arg2) int : #
Get the namespace id for namespace i (for i = 0.. num_namespaces); specifically returns the ord() of the corresponding character id
- num_features_in((example)arg1, (int)arg2) int : #
Get the number of features in a given namespace id (id=character-ord)
- num_namespaces((example)arg1) int : #
The total number of namespaces associated with this example
- pop_feature((example)arg1, (int)arg2) bool : #
Remove the top feature from a given namespace; returns True iff the list was non-empty
- pop_namespace((example)arg1) bool : #
Remove the top namespace off; returns True iff the list was non-empty
- push_feature_dict((example)arg1, (vw)arg2, (object)arg3) None : #
Add a (Python) dictionary of namespace/feature-list pairs
- push_feature_list((example)arg1, (vw)arg2, (int)arg3, (list)arg4) None : #
Add a (Python) list of features to a given namespace
- push_hashed_feature((example)arg1, (int)arg2, (int)arg3, (float)arg4) None : #
Add a hashed feature to a given namespace (id=character-ord)
- push_namespace((example)arg1, (int)arg2) None : #
Add a new namespace
- set_label_string((example)arg1, (vw)arg2, (str)arg3, (int)arg4) None : #
(Re)assign the label of this example to this string
- set_test_only((example)arg1, (bool)arg2) None : #
Change the test-only bit on an example
- sum_feat_sq((example)arg1, (int)arg2) float : #
Get the sum of feature-values squared for a given namespace id (id=character-ord)