88 bool confidence_arg =
false;
89 bool confidence_after_training =
false;
91 new_options.add(
make_option(
"confidence", confidence_arg).keep().help(
"Get confidence for binary predictions"))
92 .add(
make_option(
"confidence_after_training", confidence_after_training).help(
"Confidence after training"));
101 <<
"Confidence does not work in test mode because learning algorithm state is needed. Use --save_resume when " 102 "saving the model and avoid --test_only" 107 auto data = scoped_calloc_or_throw<confidence>();
111 void (*predict_with_confidence_ptr)(
confidence&, single_learner&,
example&) =
nullptr;
113 if (confidence_after_training)
115 learn_with_confidence_ptr = predict_or_learn_with_confidence<true, true>;
116 predict_with_confidence_ptr = predict_or_learn_with_confidence<false, true>;
120 learn_with_confidence_ptr = predict_or_learn_with_confidence<true, false>;
121 predict_with_confidence_ptr = predict_or_learn_with_confidence<false, false>;
base_learner * make_base(learner< T, E > &base)
virtual void add_and_parse(const option_group_definition &group)=0
single_learner * as_singleline(learner< T, E > *l)
void set_finish_example(void(*f)(vw &all, T &, E &))
learner< T, E > & init_learner(free_ptr< T > &dat, L *base, void(*learn)(T &, L &, E &), void(*predict)(T &, L &, E &), size_t ws, prediction_type::prediction_type_t pred_type)
typed_option< T > make_option(std::string name, T &location)
void return_confidence_example(vw &all, confidence &, example &ec)
LEARNER::base_learner * setup_base(options_i &options, vw &all)