Vowpal Wabbit
|
#include <fstream>
#include <float.h>
#include <string.h>
#include <stdio.h>
#include <netdb.h>
#include "gd.h"
#include "rand48.h"
#include "reductions.h"
#include "vw_exception.h"
#include "array_parameters.h"
Go to the source code of this file.
Classes | |
struct | gdmf |
struct | pred_offset |
class | set_rand_wrapper< T > |
Functions | |
void | mf_print_offset_features (gdmf &d, example &ec, size_t offset) |
void | mf_print_audit_features (gdmf &d, example &ec, size_t offset) |
void | offset_add (pred_offset &res, const float fx, float &fw) |
template<class T > | |
float | mf_predict (gdmf &d, example &ec, T &weights) |
float | mf_predict (gdmf &d, example &ec) |
template<class T > | |
void | sd_offset_update (T &weights, features &fs, uint64_t offset, float update, float regularization) |
template<class T > | |
void | mf_train (gdmf &d, example &ec, T &weights) |
void | mf_train (gdmf &d, example &ec) |
void | save_load (gdmf &d, io_buf &model_file, bool read, bool text) |
void | end_pass (gdmf &d) |
void | predict (gdmf &d, single_learner &, example &ec) |
void | learn (gdmf &d, single_learner &, example &ec) |
base_learner * | gd_mf_setup (options_i &options, vw &all) |
void end_pass | ( | gdmf & | d | ) |
Definition at line 298 of file gd_mf.cc.
References gdmf::all, vw::check_holdout_every_n_passes, vw::current_pass, gdmf::early_stop_thres, vw::eta, vw::eta_decay_rate, vw::final_regressor_name, finalize_regressor(), vw::holdout_set_off, gdmf::no_win_counter, vw::save_per_pass, save_predictor(), set_done(), and summarize_holdout_set().
base_learner* gd_mf_setup | ( | options_i & | options, |
vw & | all | ||
) |
Definition at line 327 of file gd_mf.cc.
References VW::config::option_group_definition::add(), VW::config::options_i::add_and_parse(), LEARNER::end_pass(), vw::eta, f, VW::config::options_i::get_typed_option(), shared_data::holdout_best_loss, vw::holdout_set_off, LEARNER::init_learner(), vw::initial_t, learn(), LEARNER::make_base(), VW::config::make_option(), vw::power_t, ldamath::powf(), predict(), vw::random_weights, save_load(), vw::sd, LEARNER::learner< T, E >::set_end_pass(), LEARNER::learner< T, E >::set_save_load(), parameters::stride_shift(), shared_data::t, THROW, UINT64_ONE, VW::config::options_i::was_supplied(), and vw::weights.
Referenced by parse_reductions().
void learn | ( | gdmf & | d, |
single_learner & | , | ||
example & | ec | ||
) |
Definition at line 318 of file gd_mf.cc.
References gdmf::all, example::l, label_data::label, mf_predict(), mf_train(), polylabel::simple, and vw::training.
Referenced by gd_mf_setup().
Definition at line 96 of file gd_mf.cc.
References gdmf::all, vw::audit, v_array< T >::clear(), example_predict::feature_space, GD::finalize_prediction(), loss_function::getLoss(), label_data::initial, example::l, label_data::label, vw::loss, mf_print_audit_features(), example::num_features, pred_offset::p, vw::pairs, v_array< T >::push_back(), gdmf::rank, gdmf::scalars, vw::sd, vw::set_minmax, polylabel::simple, THROW, and vw::triples.
Referenced by learn(), mf_predict(), and predict().
Definition at line 170 of file gd_mf.cc.
References gdmf::all, parameters::dense_weights, mf_predict(), parameters::sparse, parameters::sparse_weights, and vw::weights.
Definition at line 81 of file gd_mf.cc.
References gdmf::all, mf_print_offset_features(), example::pred, print_result(), polyprediction::scalar, vw::stdout_fileno, and example::tag.
Referenced by mf_predict().
Definition at line 36 of file gd_mf.cc.
References gdmf::all, f, parameters::mask(), vw::pairs, gdmf::rank, THROW, vw::triples, and vw::weights.
Referenced by mf_print_audit_features().
Definition at line 187 of file gd_mf.cc.
References gdmf::all, vw::eta, loss_function::getUpdate(), example::l, vw::l2_lambda, label_data::label, vw::loss, vw::pairs, vw::power_t, ldamath::powf(), example::pred, gdmf::rank, polyprediction::scalar, gdmf::scalars, vw::sd, polylabel::simple, shared_data::t, THROW, vw::triples, GD::update(), and example::weight.
Referenced by learn(), and mf_train().
Definition at line 229 of file gd_mf.cc.
References gdmf::all, parameters::dense_weights, mf_train(), parameters::sparse, parameters::sparse_weights, and vw::weights.
void offset_add | ( | pred_offset & | res, |
const float | fx, | ||
float & | fw | ||
) |
void predict | ( | gdmf & | d, |
single_learner & | , | ||
example & | ec | ||
) |
Definition at line 248 of file gd_mf.cc.
References gdmf::all, bin_text_read_write_fixed(), parameters::dense_weights, io_buf::files, initialize_regressor(), vw::num_bits, vw::random_weights, gdmf::rank, dense_parameters::set_default(), sparse_parameters::set_default(), v_array< T >::size(), parameters::sparse, parameters::sparse_weights, parameters::stride(), parameters::strided_index(), and vw::weights.
Referenced by gd_mf_setup().
void sd_offset_update | ( | T & | weights, |
features & | fs, | ||
uint64_t | offset, | ||
float | update, | ||
float | regularization | ||
) |
Definition at line 180 of file gd_mf.cc.
References features::indicies, features::size(), and features::values.