vowpalwabbit.pyvw.pylibvw¶
The Python bindings employ native bindings and then inherit from this in Python
to add extra functionality. The classes on this page should not be directly
instantiated. The types in vowpalwabbit should be used instead.
- class vowpalwabbit.pyvw.pylibvw.vw¶
Bases:
pybind11_objectthe basic VW object that holds weight vector, parser, etc.
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: pylibvw.vw, arg0: list) -> None
__init__(self: pylibvw.vw, arg0: list, arg1: py_log_wrapper) -> None
__init__(self: pylibvw.vw, arg0: pylibvw.vw) -> None
- finish(self: pylibvw.vw) None¶
stop VW by calling finish (and, eg, write weights to disk)
- get_arguments(self: pylibvw.vw) str¶
return the arguments after resolving all dependencies
- get_enabled_learners(self: pylibvw.vw) list¶
return the list of names of the enabled learners
- get_enabled_reductions(self: pylibvw.vw) list¶
return the list of names of the enabled learners
- get_holdout_sum_loss(self: pylibvw.vw) float¶
return the total cumulative holdout loss suffered so far
- get_id(self: pylibvw.vw) str¶
return the model id
- get_learner_metrics(self: pylibvw.vw) dict¶
get current learner stack metrics. returns empty dict if –extra_metrics was not supplied.
- get_options(self: pylibvw.vw, arg0: object, arg1: bool) object¶
get available vw options
- get_search_ptr(self: pylibvw.vw) Search::search¶
return a pointer to the search data structure
- get_stride(self: pylibvw.vw) int¶
return the internal stride
- get_sum_loss(self: pylibvw.vw) float¶
return the total cumulative loss suffered so far
- get_weight(self: pylibvw.vw, arg0: SupportsInt, arg1: SupportsInt) float¶
get the weight for a particular index
- get_weighted_examples(self: pylibvw.vw) float¶
return the total weight of examples so far
- hash_feature(self: pylibvw.vw, arg0: str, arg1: SupportsInt) int¶
given a feature string (arg2) and a hashed namespace (arg3), hash that feature
- hash_space(self: pylibvw.vw, arg0: str) int¶
given a namespace (as a string), compute the hash of that namespace
- json_weights(self: pylibvw.vw) str¶
get json string of current weights
- lBinary = 1¶
- lConditionalContextualBandit = 6¶
- lContextualBandit = 4¶
- lContextualBanditEval = 9¶
- lContinuous = 8¶
- lCostSensitive = 3¶
- lDefault = 0¶
- lMax = 5¶
- lMulticlass = 2¶
- lMultilabel = 10¶
- lSimple = 1¶
- lSlates = 7¶
- learn(self: pylibvw.vw, arg0: VW::example) None¶
given a pyvw example, learn (and predict) on that example
- learn_multi(self: pylibvw.vw, arg0: list) None¶
given a list pyvw examples, learn (and predict) on those examples
- num_weights(self: pylibvw.vw) int¶
how many weights are we learning?
- pACTION_PDF_VALUE = 9¶
- pACTION_PROBS = 3¶
- pACTION_SCORES = 2¶
- pACTIVE_MULTICLASS = 11¶
- pDECISION_SCORES = 8¶
- pMULTICLASS = 4¶
- pMULTICLASSPROBS = 7¶
- pMULTILABELS = 5¶
- pNOPRED = 12¶
- pPDF = 10¶
- pPROB = 6¶
- pSCALAR = 0¶
- pSCALARS = 1¶
- predict_multi(self: pylibvw.vw, arg0: list) None¶
given a list of pyvw examples, predict on that example
- run_parser(self: pylibvw.vw) None¶
parse external data file
- save(self: pylibvw.vw, arg0: str) None¶
save model to filename
- set_weight(self: pylibvw.vw, arg0: SupportsInt, arg1: SupportsInt, arg2: SupportsFloat) None¶
set the weight for a particular index
- setup_example(self: pylibvw.vw, arg0: VW::example) None¶
given an example that you’ve created by hand, prepare it for learning (eg, compute quadratic feature)
- tACTION = 1¶
- tSHARED = 0¶
- tSLOT = 2¶
- tUNSET = 3¶
- class vowpalwabbit.pyvw.pylibvw.example¶
Bases:
pybind11_object- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: pylibvw.example, arg0: pylibvw.vw, arg1: typing.SupportsInt, arg2: str) -> None
Given a string as an argument parse that into a VW example
__init__(self: pylibvw.example, arg0: pylibvw.vw, arg1: typing.SupportsInt) -> None
Construct an empty example; you must provide a label type
__init__(self: pylibvw.example, arg0: pylibvw.vw, arg1: typing.SupportsInt, arg2: pylibvw.example) -> None
Create a new example object pointing to an existing object
- ensure_namespace_exists(self: pylibvw.example, arg0: SupportsInt) None¶
Add a new namespace if it doesn’t already exist
- erase_namespace(self: pylibvw.example, arg0: SupportsInt) None¶
Remove all the features from a given namespace
- feature(self: pylibvw.example, arg0: SupportsInt, arg1: SupportsInt) int¶
Get the feature id for the ith feature in a given namespace id
- feature_weight(self: pylibvw.example, arg0: SupportsInt, arg1: SupportsInt) float¶
The the feature value (weight) per .feature(…)
- get_action_pdf_value(self: pylibvw.example) tuple¶
Get action and pdf value from example prediction
- get_action_scores(self: pylibvw.example) list¶
Get action scores from example prediction
- get_active_multiclass(self: pylibvw.example) tuple¶
Get active multiclass from example prediction
- get_cb_continuous_class(self: pylibvw.example, arg0: SupportsInt) int¶
Assuming a cb_continuous label type, return the ith class
- get_cb_continuous_cost(self: pylibvw.example, arg0: SupportsInt) float¶
Assuming a cb_continuous label type, return the cost for the ith action
- get_cb_continuous_num_costs(self: pylibvw.example) int¶
Assuming a cb_continuous label type, return the number of costs
- get_cb_continuous_pdf_value(self: pylibvw.example, arg0: SupportsInt) float¶
Assuming a cb_continuous label type, return the ith pdf_value
- get_cb_eval_action(self: pylibvw.example) int¶
Assuming a cb_eval label type, get action
- get_cb_eval_class(self: pylibvw.example, arg0: SupportsInt) int¶
Assuming a cb_eval label type, return the ith class
- get_cb_eval_cost(self: pylibvw.example, arg0: SupportsInt) float¶
Assuming a cb_eval label type, return the cost for the ith action
- get_cb_eval_num_costs(self: pylibvw.example) int¶
Assuming a cb_eval label type, return the number of costs
- get_cb_eval_partial_prediction(self: pylibvw.example, arg0: SupportsInt) float¶
Assuming a cb_eval label type, return the ith partial prediction
- get_cb_eval_probability(self: pylibvw.example, arg0: SupportsInt) float¶
Assuming a cb_eval label type, return the ith probability
- get_cb_eval_weight(self: pylibvw.example) int¶
Assuming a cb_eval label type, get weight
- get_cbandits_class(self: pylibvw.example, arg0: SupportsInt) int¶
Assuming a contextual_bandits label type, return the ith class
- get_cbandits_cost(self: pylibvw.example, arg0: SupportsInt) float¶
Assuming a contextual_bandits label type, return the cost for the ith action
- get_cbandits_num_costs(self: pylibvw.example) int¶
Assuming a contextual_bandits label type, return the number of costs
- get_cbandits_partial_prediction(self: pylibvw.example, arg0: SupportsInt) float¶
Assuming a contextual_bandits label type, return the ith partial prediction
- get_cbandits_prediction(self: pylibvw.example) int¶
Assuming a contextual_bandits label type, return the prediction
- get_cbandits_probability(self: pylibvw.example, arg0: SupportsInt) float¶
Assuming a contextual_bandits label type, return the ith probability
- get_cbandits_weight(self: pylibvw.example) int¶
Assuming a contextual_bandits label type, get the weight
- get_ccb_action(self: pylibvw.example, arg0: SupportsInt) int¶
Assuming a CCB label type, return the ith action
- get_ccb_cost(self: pylibvw.example) float¶
Assuming a CCB label type, get the cost
- get_ccb_explicitly_included_actions(self: pylibvw.example) list¶
Assuming a CCB label type, return the list of explicitly included actions
- get_ccb_has_outcome(self: pylibvw.example) bool¶
Assuming a CCB label type, check if has outcome
- get_ccb_num_explicitly_included_actions(self: pylibvw.example) int¶
Assuming a CCB label type, return the number of explicitly included actions
- get_ccb_num_probabilities(self: pylibvw.example) int¶
Assuming a CCB label type, return the number of probabilities
- get_ccb_probability(self: pylibvw.example, arg0: SupportsInt) float¶
Assuming a CCB label type, return the ith probability
- get_ccb_type(self: pylibvw.example) int¶
Assuming a CCB label type, return the example type
- get_ccb_weight(self: pylibvw.example) float¶
Assuming a CCB label type, get the weight
- get_costsensitive_class(self: pylibvw.example, arg0: SupportsInt) int¶
Assuming a cost_sensitive label type, return the ith class
- get_costsensitive_cost(self: pylibvw.example, arg0: SupportsInt) float¶
Assuming a cost_sensitive label type, return the cost for the ith class
- get_costsensitive_num_costs(self: pylibvw.example) int¶
Assuming a cost_sensitive label type, return the number of costs
- get_costsensitive_partial_prediction(self: pylibvw.example, arg0: SupportsInt) float¶
Assuming a cost_sensitive label type, return the ith partial prediction
- get_costsensitive_prediction(self: pylibvw.example) int¶
Assuming a cost_sensitive label type, return the prediction
- get_costsensitive_wap_value(self: pylibvw.example, arg0: SupportsInt) float¶
Assuming a cost_sensitive label type, return the ith wap value
- get_decision_scores(self: pylibvw.example) list¶
Get decision scores from example prediction
- get_example_counter(self: pylibvw.example) int¶
Returns the counter of total number of examples seen up to and including this one
- get_feature_number(self: pylibvw.example) int¶
Returns the total number of features for this example
- get_ft_offset(self: pylibvw.example) int¶
Returns the feature offset for this example (used, eg, by multiclass classification to bulk offset all features)
- get_loss(self: pylibvw.example) float¶
Returns the loss associated with this example
- get_multiclass_label(self: pylibvw.example) int¶
Assuming a multiclass label type, return the corresponding label
- get_multiclass_prediction(self: pylibvw.example) int¶
Assuming a multiclass label type, return the prediction
- get_multiclass_weight(self: pylibvw.example) float¶
Assuming a multiclass label type, return the importance weight
- get_multilabel_labels(self: pylibvw.example) list¶
Get multilabel labels from example label
- get_multilabel_predictions(self: pylibvw.example) list¶
Get multilabel predictions from example prediction
- get_partial_prediction(self: pylibvw.example) float¶
Returns the partial prediction associated with this example
- get_pdf(self: pylibvw.example) list¶
Get pdf from example prediction
- get_prob(self: pylibvw.example) float¶
Get probability from example prediction
- get_scalars(self: pylibvw.example) list¶
Get scalar values from example prediction
- get_simplelabel_initial(self: pylibvw.example) float¶
Assuming a simple_label label type, return the initial value
- get_simplelabel_label(self: pylibvw.example) float¶
Assuming a simple_label label type, return the corresponding label
- get_simplelabel_prediction(self: pylibvw.example) float¶
Assuming a simple_label label type, return the prediction
- get_simplelabel_weight(self: pylibvw.example) float¶
Assuming a simple_label label type, return the importance weight
- get_slates_action(self: pylibvw.example, arg0: SupportsInt) int¶
Assuming a slates label type, return the ith action
- get_slates_cost(self: pylibvw.example) float¶
Assuming a slates label type, get the cost
- get_slates_labeled(self: pylibvw.example) bool¶
Assuming a slates label type, check if labeled
- get_slates_num_probabilities(self: pylibvw.example) int¶
Assuming a slates label type, return the number of probabilities
- get_slates_probability(self: pylibvw.example, arg0: SupportsInt) float¶
Assuming a slates label type, return the ith probability
- get_slates_slot_id(self: pylibvw.example) int¶
Assuming a slates label type, get the slot id
- get_slates_type(self: pylibvw.example) int¶
Assuming a slates label type, return the example type
- get_slates_weight(self: pylibvw.example) float¶
Assuming a slates label type, get the weight
- get_tag(self: pylibvw.example) str¶
Returns the tag associated with this example
- get_topic_prediction(self: pylibvw.vw, arg0: pylibvw.example, arg1: SupportsInt) float¶
For LDA models, returns the topic prediction for the topic id given
- get_total_sum_feat_sq(self: pylibvw.example) float¶
The total sum of feature-value squared for this example
- get_updated_prediction(self: pylibvw.example) float¶
Returns the partial prediction as if we had updated it after learning
- namespace(self: pylibvw.example, arg0: SupportsInt) int¶
Get the namespace id for namespace i (for i = 0.. num_namespaces)
- num_features_in(self: pylibvw.example, arg0: SupportsInt) int¶
Get the number of features in a given namespace id
- num_namespaces(self: pylibvw.example) int¶
The total number of namespaces associated with this example
- pop_feature(self: pylibvw.example, arg0: SupportsInt) bool¶
Remove the top feature from a given namespace; returns True iff the list was non-empty
- pop_namespace(self: pylibvw.example) bool¶
Remove the top namespace off; returns True iff the list was non-empty
- push_feature_dict(self: pylibvw.example, arg0: pylibvw.vw, arg1: dict) None¶
Add a (Python) dictionary of namespace/feature-list pairs
- push_feature_list(self: pylibvw.example, arg0: pylibvw.vw, arg1: SupportsInt, arg2: SupportsInt, arg3: list) None¶
Add a (Python) list of features to a given namespace
- push_hashed_feature(self: pylibvw.example, arg0: SupportsInt, arg1: SupportsInt, arg2: SupportsFloat) None¶
Add a hashed feature to a given namespace
- push_namespace(self: pylibvw.example, arg0: SupportsInt) None¶
Add a new namespace
- set_label_string(self: pylibvw.example, arg0: pylibvw.vw, arg1: str, arg2: SupportsInt) None¶
(Re)assign the label of this example to this string
- set_test_only(self: pylibvw.example, arg0: bool) None¶
Change the test-only bit on an example
- sum_feat_sq(self: pylibvw.example, arg0: SupportsInt) float¶
Get the sum of feature-values squared for a given namespace id (id=character-ord)